International [International Journal of Management and Marketing Intelligence, 2(3), 11-20.

Volume: 2 http://ijmmi.com
Journal of Issue: 3 ISSN: 3080-860X
Management Received: July 01, 2025 Accepted: August 11, 2025
and Citation: Khawaldeh, B., Garcia, A. M., & Faris, H. (2025) Evaluation of Convolutional Neural Networks

Marketing for Predicting Steering Angles in Autonomous Driving Systems Using the Udacity Simulator.
Intelligence International Journal of Management and Marketing Intelligence 2(3), 11-20. DOI:
9 https://doi.org/10.64251/ijmmi.86

Evaluation of Convolutional Neural Networks for Predicting Steering Angles
in Autonomous Driving Systems Using the Udacity Simulator

Bashar Khawaldeh!", Antonio Miguel Mora Garcia!, Hossam Faris?

ISignal Theory, Telematics and Communications Department (TSTC), University of Granada, Granada, Spain.
2Business Information Technology Department, The University of Jordan, Amman, Jordan.

ARTICLE DETAILS ABSTRACT
Article History This research explores the use of convolutional neural networks (CNNSs) to develop
Published Online: September 2025 autonomous driving systems, focusing on predicting steering angles for autonomous

vehicles. A custom dataset was created using the Udacity simulator, which provides a
high-fidelity simulation environment with multiple lanes and three-angle cameras to

égm(ingnal Neural Networks collect driving data. This data encompasses, but is not limited to, vehicle speed, steering
Steering Angles angle, and gear position. To achieve this objective, two CNN models were utilized: the
Autonomous Driving Systems simple Comma.ai model and the more complex NVIDIA model. These models were
Udacity Simulator utilized to compare performance and examine their ability to predict steering angles

accurately. The experimental framework entailed the training of models on data using
JEL Codes: mean loss evaluation (MSE) and the subsequent validation of their performance on
R41, R42, 118 independent validation data. The findings of the study demonstrated that both models

exhibited the capacity to differentiate driving patterns from visual data. However, the
Corresponding Author Email: NV_IDIA mod_el exhibited sup_erlor perfor_manc_e_ in complex environments, a feat
khawaldeh@correo.ugr.es attributable to its advanced architecture and its ability to extract more accurate features.
Conversely, the Comma model demonstrated superior performance in less complex
environments, making it a suitable option for simpler systems.

1. INTRODUCTION

The transportation sector is a fundamental component of modern society’s development. In recent decades, it has undergone a qualitative
shift, attributable to the integration of digital technologies and artificial intelligence into its systems. One of the most notable expressions
of this evolution is the advent of autonomous vehicles, which signify a paradigm shift in mobility paradigms by leveraging sophisticated
algorithms to process data and formulate decisions in dynamic and intricate driving scenarios. The accuracy of predicting steering angles
is a critical factor in ensuring vehicle safety and efficiency, as it is directly related to the vehicle’s ability to maintain lane stability, navigate
curves, and avoid obstacles. Recent studies have demonstrated the efficacy of deep learning techniques, particularly convolutional neural
networks (CNNs), in processing image data to extract driving patterns and predict steering angles with a high degree of accuracy.
Accordingly, the objective of this research is to examine and appraise the efficacy of CNN models in predicting steering angles. This
evaluation will be based on simulation data that has been collected using an advanced simulation environment. The research also focuses
on comparing two different neural network models-the simple Comma.ai model and the more complex NVIDIA model—to explore their
ability to adapt to varying driving environments and highlight their strengths and limitations. This paper presents a practical guide for
evaluating convolutional neural networks (CNNs) in the context of autonomous driving. The present study focuses on the generation of
simulation data, in conjunction with an examination of preprocessing techniques, training methods, and optimization methods.

2. STATE OF THE ART

The evolution of autonomous driving can be traced back to early inventions such as Leonardo da Vinci’s self-propelled cart in the 15th
century, Whitehead’s torpedo in 1868, the aircraft autopilot in 1933, and automotive cruise control introduced in 1945. Notable milestones
in the field of robotic transportation include Stanford’s camera-guided vehicle, developed in 1961, and Japan’s 1977 traffic-sign-
recognizing car. The 1980s and 1990s witnessed additional breakthroughs, including Ernst Dickmanns’ vision-based vehicle in 1987 and
the Predator drone in 1995, thereby extending autonomy into the domain of aviation. From 2004 to 2013, the Defense Advanced Research
Projects Agency (DARPA) initiated a series of challenges that significantly accelerated the development of vehicle automation

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

technologies. Initially, vehicles that had failed to complete a 150-mile course by 2007 were able to successfully navigate a 60-mile urban
route shortly thereafter. This development laid the foundation for the development of contemporary self-driving technologies, as reported
by WIRED Brand Lab (WIRED Brand Lab., 2016).

The development of autonomous vehicles has been intricately linked to advancements in machine learning and deep learning (DL), which
have led to substantial enhancements in the capacity of vehicles to discern, interpret, and respond to intricate environments. A seminal
example of this pioneering work was the ALVINN project (1989), which employed a neural network to control a vehicle using camera
input, thereby demonstrating the feasibility of real-time neural control despite initial skepticism (Pomerleau, 1988). In the early stages of
research in this field, prominent figures such as Yann LeCun encountered challenges in implementing neural networks for computer vision
purposes. These difficulties can be attributed to two main factors: first, the limited computational capabilities of the time, and second, the
suboptimal training methodologies employed at the time (Krizhevsky et al., 2012). To add more, Convolutional neural networks (CNNs)
have emerged as a significant advancement in the field of deep learning (DL), paving the way for the development of vehicles capable of
detecting objects, recognizing traffic signs, and making navigation decisions using visual data. Bojarski and his coauthers advanced this
approach by training CNNs directly on driving datasets to predict steering commands, demonstrating the practical effectiveness of deep
learning (DL) in real-world driving scenarios (Bojarski et al., 2016). Recent advancements in autonomous driving have employed
simulation platforms and sophisticated learning strategies to augment system capabilities. Simulators such as CARLA (Dosovitskiy et al.,
2017) and VISTA (Amini et al., 2020) have played a pivotal role in accelerating research by providing safe, controlled environments for
testing and training across a range of conditions. To establish a connection between simulated and real-world environments, domain
adaptation methods such as domain randomization (Amini et al., 2020; Tobin et al., 2017). have been employed to enhance model
robustness and generalization. Which demonstrate the efficacy of RL in optimizing driving policies in dynamic and unpredictable
environments. To calrify, this study specifically examines and compares the Comma and NVIDIA CNN models for end-to-end
autonomous driving. The performance of these systems was evaluated across a range of driving scenarios to assess their strengths and
limitations in steering prediction, perception accuracy, and adaptability. The findings offer practical insights into the robustness and
efficiency of CNN-based models, guiding the further development of reliable autonomous driving systems.

3. MATERIALS AND METHODS

3.1. Udacity Simulator

The Udacity self-driving car simulator is an open-source platform built on Unity (https://github.com/udacity/self-driving-car-sim)
(Udacity2017). The system has been engineered to facilitate the training and evaluation of autonomous vehicle models. The simulator pro-
vides an interactive learning environment, enabling users to record driving data—including steering angles, speed, throttle, and reverse
gear status—using a vehicle equipped with three cameras (center, left, and right) capturing at 24 frames per second (fps). The device offers
two operational modes: a training mode for manual data collection and an autonomous mode for evaluating model performance. Video
frames are stored as JPG images along with associated metadata, facilitating in-depth analysis and debugging. The simulator contains two
tracks: the 1.1-kilometer Lake track, which is relatively elementary but incorporates curves in both directions, and the 1.5-kilometer Jungle
track, which is more challenging due to its complex terrain and sharper turns. For the present study, the Lake track was selected for the
initial data collection. The platform exhibits efficiency and user-friendliness, with the capacity to operate on computers with medium
specifications, thereby ensuring accessibility to a broad user base. However, the system is not without its limitations. Foremost among
these is its inability to automatically return the vehicle to the track after collisions. In addition, the lack of manual speed control may have
a deleterious effect on the consistency of data collection. Notwithstanding these limitations, the simulator furnishes a realistic environment
conducive to the generation of datasets and the evaluation of autonomous driving algorithms.

3.2. Dataset Collection and Processing

To this end, a custom dataset was created using the Udacity driving simulator to facilitate CNN-based prediction of steering angles. The
vehicle was manually operated by a human driver, while three synchronized cameras (center, left, and right) captured multiple viewpoints
at a rate of 24 frames per second (fps). Concurrently, the data set encompasses parameters such as steering angle, throttle position, vehicle
speed, and the status of the reverse gear (Shafiee et al., 2017).. The dataset covers a series of driving sessions conducted under diverse
conditions, initially comprising over 9,000 images. To mitigate redundancy and enhance model generalization, an undersampling approach
was implemented, yielding 3,882 images. Subsequently, both datasets were meticulously partitioned into training (80%) and validation
(20%) subsets, thereby ensuring a balanced distribution of steering angles. The preprocessing pipeline entailed the following steps: (1)
cropping to focus on the road region, (2) converting images from RGB to YUV color space, (3) applying a Gaussian blur to reduce noise,
and (4) resizing to 200 x 66 pixels to match the CNN input requirements. The combination of these steps resulted in enhanced feature
representation, the elimination of irrelevant details, and the assurance of consistent, high-quality inputs. Consequently, the process yielded
a diverse and optimized dataset that is well-suited for training and evaluating autonomous driving models.

3.3. CNN Models for Autonomous Driving

Significant advancements in artificial intelligence have been made, particularly in the field of computer vision, resulting in substantial
progress in image recognition. The advent of deep learning (DL) models, particularly convolutional neural networks (CNNs), has been
instrumental in this development. These networks demonstrate a high degree of proficiency in the identification of intricate patterns within
visual data, while exhibiting a reduced need for parameters and enhanced efficiency in training processes, as evidenced by (Caffaratti et

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

al., 2019). In the domain of autonomous driving, convolutional neural networks (CNNs) have demonstrated remarkable proficiency in
interpreting visual inputs from vehicle-mounted cameras, a capability that is indispensable for self-driving systems. A significant
advantage of these models lies in their capability for automated feature extraction directly from raw images. By acquiring knowledge of
hierarchical representations of visual data, CNNs are capable of predicting significant driving actions, such as steering angles. The capacity
to process intricate visual data facilitates autonomous vehicles’ ability to accurately perceive their surroundings and make real-time
navigation decisions. This section underscores two prevalent CNN architectures in the domain of autonomous driving: the Comma model
(Comma.ai., 2016; Santana et al., 2016) and the NVIDIA models (Bojarski et al., 2016; Lade et al., 2021; Smolyakov et al., 2018). The
two architectures have been engineered to process camera inputs and predict steering angles, a pivotal component of self-driving
technology. A detailed comparison of their structural differences, parameter sizes, and the ways each model is specifically optimized for
steering angle prediction in autonomous vehicles will be presented.

3.3.1. Comma Architecture
The Comma architecture is a deep convolutional neural network (CNN) designed for end-to-end learning in autonomous driving. This

method enables the model to directly interpret camera images and generate control commands, such as steering angles, thereby eliminating
the need for manual feature design. The CNN is composed of a series of layers arranged sequentially, with each layer extracting features,
reducing dimensionality, and estimating steering angles based on the learned representations. This end-to-end learning approach has been
demonstrated to optimize the training process while augmenting real-time performance in autonomous driving applications. The
architecture of the Comma CNN comprises multiple layers, including convolutional layers that facilitate feature extraction, a flatten layer
that enables data reshaping, and dense layers that execute the decision-making process. The arrangement of layers in the Comma model is
illustrated in Figure 1 and detailed in Figure 2.

waights
(512,)
Bias (1)

(160, 320, 3)

waights
{T6EE,)
Biae {512)

3

asusg O---QO0O

2 4
00
. 4
Dense Output layer
Steering angle

Lambda Conv2D Conv2D Conv2D

asuag (O -+

Kemnel_size = (8, 8) — kemel_size=(5, 5) -
Figure 1: Overview of the Comma CNN architecture

Figure 1 is showcasing key layers for processing input images in tasks like steering angle prediction. The diagram features a Conv2D layer
with specified kernels, Dense layers for classification or regression, and components like weights and biases to extract and process features
efficiently. Input image sourced from the author’s Udacity simulator dataset. The Comma architecture is designed to process image inputs
with dimensions of 160, 320, or 3 by passing them through a series of convolutional layers. Each layer implements a series of filters on
the input image, leading to a progressive reduction in spatial dimensions while concurrently augmenting the depth of the feature maps.
The network’s hierarchical feature extraction capability enables the identification of fundamental visual elements, including edges and
textures. These elements are then integrated to generate more complex patterns at higher levels of abstraction, as previously documented
by Jordan (Jordan, 2025). Also, the initial convolutional layer yields 16 feature maps, which are subsequently processed by a secondary
convolutional layer comprising 32 filters. After this is a third convolutional layer comprising 64 filters. After the convolutional stages, the
resulting output is flattened into a one-dimensional vector and passed through fully connected (dense) layers. These dense layers undergo
a progressive decrease in size, ultimately resulting in a final layer comprising a single unit that serves to predict the steering angle.
Addetionally, Figure 2 shows Comma CNN Architecture Overview. This detailed model structure highlights the layers involved in
processing input images for steering angle prediction, including convolutional layers (Conv2D), flattening, and dense layers, along with
the number of parameters for each.

13

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

Layer (type) Output Shape Param #
lambda (Lambda) (Hone , 160, 320, 3) 1]
cenvld (ConwiD) (None, 30, T8, 18) aones
conv2d_1 (Cenv2D) (Nene, 1B, 38, 32) 12832
conv2d_2 (Coenv2D) (Hone, T, 17, 64) 51264
flatten (Flatten) (Hone , T616) a

dense (Dense} (HNene, 512) 38990904
dense_1 (Dense) [(Hone , 1) 513

Total params: 3967601 (15.14 ME}
Trainable params: 3967601 (15.14 ME}
Non-trainable parame: 0 (0.00 Byte)

Figure 2. Comma CNN Architecture Overview

The Comma model employs the Adam optimizer (Adam) to dynamically adjust the learning rate, thereby enhancing both convergence
speed and overall performance. The model utilizes the mean-squared error (MSE) loss function, rendering it particularly well- suited for
regression tasks, such as predicting continuous steering angles (Rao & Singer, 2017). The model, which encompasses 3.97 million
parameters, is capable of capturing intricate relationships between input data, images, and the corresponding steering angle predictions.
The architecture, implemented in Keras, commences with a Lambda layer that normalizes input images to the range [-1, 1]. This is followed
by convolutional layers for feature extraction and fully connected layers for steering angle prediction. Figure 3 shows Python
implementation of the Comma model using Keras for autonomous driving tasks. The model comprises multiple convolutional layers
followed by dense layers to predict steering angles based on input images. The code normalizes the input, extracts features using
convolutional layers, and uses fully connected layers for final prediction.

Python Code: Comma MModel

1 def Comma_model () :

a model = Sequential ([

& # Normalize input data to 2, 17

a Lambda (lambda x: x / 127.5 — 1.0, dinput_shape=(180, 3220, 32),
Conuvolutional Llayers for feature exmtraction

- Conwv2D(1s6, (8, 8), strides=(4, 4), activatiom="rTelu'l,

T Conwv2D(22, (5, 5), strides=(2, 2), activatiom="relu'd),

s Conwv2D(54, (5, strides=(2, 2), activation="relu'),

£ # Flatten and j ¢y comnected Layers

Lon Flatten(),

11 # Hidden layer with 512 wunits and Relll activatio
12 Dense (512, activation="rTelu'l,

1 Dense (1) # Output layer for prediction

14 12

15 # Compile the model with

16 model . compilef(optimizer="adam", loss="mse"

17 return model

Figure 3. Python implementation of the Comma model using Keras for autonomous driving tasks

3.3.2. NVIDIA Architecture
The NVIDIA architecture is a state-of-the-art deep convolutional neural network (CNN) that has been meticulously engineered for

autonomous driving applications. In comparison to the Comma model, it exhibits a more intricate network configuration, comprising five
convolutional layers for feature extraction, succeeded by three fully connected (dense) layers for regression. The incorporation of
additional convolutional layers into the network facilitates the capture of more abstract, high-level features from raw camera images,
thereby enhancing its capacity to accurately predict driving behaviors, such as steering angles, across a diverse range of scenarios. This
renders the model especially efficacious in autonomous driving tasks that necessitate robustness under variable environmental conditions.
The convolutional layers fulfill two primary functions: (1) progressively reducing the spatial resolution of input images, thereby enabling
the network to prioritize the most salient features, and (2) increasing the depth of feature maps to capture complex and abstract patterns as
processing progresses deeper into the network. Initial layers are responsible for detecting basic visual elements, such as edges and textures.
In contrast, subsequent layers extract more intricate structures, including object shapes and spatial arrangements. These advanced structures
are essential for accurately predicting steering angles. The final convolutional layer produces a feature map of dimensions 1 x 21 x 64,
which is subsequently flattened into a one-dimensional vector comprising 1,344 elements, thereby preparing it for integration into the
subsequent fully connected layers. The fully connected layers are responsible for the regression task, processing the flattened feature vector
through three dense layers with decreasing numbers of units: 100 units in the first layer, 50 in the second, and 10 in the third. ReLU

14

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

activation functions are applied throughout to enable the network to learn complex nonlinear mappings. The final dense layer contains a
single neuron that outputs a scalar value representing the predicted steering angle, thereby guiding the vehicle’s direction during
autonomous operation. As demonstrated in Figures 4 and 6, and elaborated in Figure 5, the network commences with a convolutional layer
comprising 24 filters with a 5 x 2 kernel. This layer is engineered to capture low-level features across a broad receptive field. Subsequent
convolutional layers progressively reduce spatial dimensions by adjusting stride sizes while concurrently increasing the number of filters
to enhance the richness of feature representation. This hierarchical design enables the network to efficiently extract meaningful features
from input images. The NVIDIA architecture establishes a robust mapping from high-dimensional image inputs to low-dimensional
steering outputs by combining convolutional layers for feature extraction with fully connected layers for regression. This design ensures
strong generalization across diverse driving scenarios, supporting safe and reliable autonomous navigation. The NVIDIA architecture is
characterized by 231,459 parameters, offering a relatively modest yet potent configuration for deep convolutional networks. The device’s
compact design ensures efficient training and deployment, even in settings with limited resources, while maintaining the ability to capture
intricate and highly detailed features from input data.

— wg;;‘ mga m§8 mgf; wg:f‘ 82 gmnm -
= EX] EJC EZS £E3C EXC 328 388 258 233
S 297 o3, 58 =3 1 53 232 £32 £3¢ 33%
& 298 358 58 T8 T8 1331983983433
g g0 3o 3z@ 3gn ga | Taatea P TE R,
— ® ® @ @ 3%’
»OO%0O=0% 52
5 5 ¢ : §§
® &6 © & 3
Conv2D Conv2D Conv2D Conv2D Conv2D 9 9 9 9
? 3 B ?
———- kernel_size=(5, 2) ——— -- kernel_size=(3, 3) - . o o o

Figure 4. The NVIDIA CNN architecture for autonomous driving uses Conv2D and Dense layers to predict steering angles from input
images

Key parameters (Figure 4) like kernel sizes, weights, and biases are applied in each layer. The input image is from the author’s dataset,
collected using the Udacity simulator. A substantial corpus of research underscores the striking parallels between the NVIDIA model and
the Comma model, most notably their shared utilization of the Adam optimizer and the MSE loss function. The primary distinction,
however, lies in the NVIDIA model’s greater complexity, which is achieved through the inclusion of additional layers. These layers have
been shown to enhance the system’s capacity to discern and interpret intricate patterns within the input data. Consequently, the NVIDIA
model demonstrates superior proficiency in the extraction of fine-grained features, while its comparatively efficient parameter count
renders it well-suited for real-time operations, such as autonomous driving. The NVIDIA model is implemented using Keras, consistent
with the framework employed in the Comma architecture. The model’s architecture comprises five convolutional layers, succeeded by
fully connected layers. This configuration processes input images, such as those captured by a vehicle-mounted camera, to generate
steering angle predictions. The convolutional layers are responsible for gradually extracting higher-level features from raw images, while
the fully connected layers combine this extracted information to generate accurate control predictions. Beyond its architecture, the NVIDIA
model incorporates rigorous training practices to ensure effective learning and generalization. The model is trained on an extensive dataset
comprising camera images captured under diverse driving conditions to minimize the mean squared error (MSE) between the predicted
and actual steering angles. Figure 5 shows the NVIDIA model architecture for steering angle prediction includes Conv2D layers for feature
extraction and Dense layers for regression. It has 231,459 trainable parameters (904.14 KB).

Model seqgquential

Layer (typel Output Shape Param #&
conwvid (Comw2D) (Hone , 31, 100, 24) Ta4a
conv2d_1 {(Comw2D) (Honme , 14, S0, 36} B6TE6
conwv2d_2 {(Conw2D) (Hone , 5, 25, 48) 17328
conv2d_3 {(Comnw2D) (Hone , 3, 23, 64) 2TTLZ2
conv2d_4 {(Conw2D) (Honme , 1, 21, 6437 36eH2s
flatten {(Flattemn) (HNone , 1344) o
denze (Densel (Honme , 1000 134500
dense_1 {(Dense) CHonme ., S0X 5050
dense_2 {(Dense) (HNone , 103} 510
dense_3 {(Dense) (Home ., 12 11

Total params: 231459 (904.14 KEBE)
Trainable params: 231459 (904.14 KE)
Hon-trainable params: 0 {(0.00 Byte)

Figure 5. The NVIDIA model architecture for steering angle prediction

15

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

Figure 6 presents the Python implementation showcases the end-to-end DL architecture used by NVIDIA for autonomous driving. The
model consists of multiple convolutional layers that perform feature extraction from input images, followed by fully connected layers that
predict the steering angle of the vehicle. It is compiled with the Adam optimizer and the MSE loss function, which are key components

for efficient model training.

Python Code: NVIDIA Architecture

def NVIDIA Architecture():

model = Segquentiald{}

model . add{Convolution2D (22,

input_shape=(&&, 200, 3
model . add{Convolution2D (36,
activation="elu'))}

T model . add{Convolution2D (48,

karnel_size=(5,

2),

strides={2,

¥}, actiwvation="elu'})

kernel_size=(E,

karnel_size=(5,

2),

2),

strides=(2,

strides={2,

activation="elu'))
model . add{Convolution2D(54, kermel_size=(32, 3}, activation="elu'})
model . add{(Convolution2D (64, kermel_ size=(32, 3}, activation="elu'l})

add{Flatten{}}

modal

14 # Fully commnected layers for prediction
model . add{Dense (100, activation="elu'l})
model . add{Dense (50, actiwvation='elu'l}}

T model . add{(Dense(10, activation='elu'l})}
Outpuit Llayer for predi =k
modal . add{Dense(1}}

% modal.compile (optimizar="adam loss="'msa")

4 return model

Figure 6. The Python implementation showcases the end-to-end DL architecture used by NVIDIA for autonomous driving
3.3.3. Comparative Analysis
Table 1 outlines key characteristics such as depth, number of parameters, activation functions, training efficiency, and primary strengths,
highlighting the differences in their design and functionality for autonomous vehicle applications.

Table 1. A comparative analysis of the Comma and NVIDIA neural network architectures used in autonomous driving

Aspects Comma NVIDIA

Depth 3 convolutional layers 5 convolutional layers
Parameters 3.97 million 231,459

Activation Function ReLU ELU

Training Efficiency Moderate High

Key Strengths End-to-end learning; robust design | Abstract feature extraction; compact design

The proposed study effects among Both architectures have been meticulously engineered to estimate steering angles in autonomous
driving. However, a comparative analysis reveals that the NVIDIA model introduces a higher degree of complexity. This augmented
intricacy is attributable to the incorporation of extra convolutional layers, which facilitate the capture of more nuanced visual motifs.
Conversely, the Comma model employs a more streamlined and efficient approach, particularly well-suited for less demanding driving
scenarios. The selection of one model over another is contingent upon a balanced consideration of model complexity and the requirements
of the driving environment. the independent variable and dependent variable are seen in the study model, as shown in Figure 1.

4. EXPERIMENTAL RESULTS

This section presents the evaluation of two convolutional neural network (CNN) architectures: the Comma.ai model and the NVIDIA
model, with a focus on their overall performance. All experiments were conducted in Python using Google Colaboratory with GPU
acceleration. The hardware setup included either an NVIDIA Tesla T4 (2560 CUDA cores, 16GB VRAM) or an NVIDIA Tesla K80
(2496 CUDA cores, 12GB VRAM), verified via the nvidia-smi command. For computationally intensive tasks, the Tesla T4 was preferred.
The implementation relied on several key libraries: Keras for model construction (Keras, 2023) , TensorFlow for training and deployment
(Abadi et al., 2016), Scikit-learn for preprocessing and machine learning tasks, Pandas for structured data management, and NumPy for
numerical computations. Also, Models were trained with a standard learning rate to ensure both stability and convergence (LeCun et al.,
2015). The dataset was split into 80% for training and 20% for validation. Performance was assessed using the Mean Squared Error (MSE)

16

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

(Wikipedia contributors, 2023), which quantifies the average squared difference between predicted and actual values, serving as an
objective basis for comparing model accuracy.

4.1. Training the CNN Model with Comma Architecture

The CNN model was trained using the Comma architecture on a designated dataset over the course of ten consecutive epochs. The objective
of this training was to assess the model’s learning capability and its overall effectiveness. The mean duration of each epoch was
approximately 460 seconds, indicative of the model’s efficacy in managing the dataset. This relatively brief epoch duration exemplifies
the optimized design of the training procedure, thereby enabling effective learning while conserving computational resources. The recorded
training time facilitated a comprehensive examination of the model’s capacity to learn and adapt across epochs. Additionally, it enabled
close monitoring of its progress in tuning parameters and enhancing performance. Further information, including detailed evaluation
metrics and results, can be found in Figure 7, which provides a more in-depth analysis of the model’s development during training. In the
initial epochs, a discernible discrepancy was noted between the training loss and the validation loss, underscoring the potential for
enhancement in the model’s learning process. Specifically, the validation loss exceeded the training loss, indicating that the model had not
yet demonstrated effective generalization to unseen data. As the training program progressed, however, the model demonstrated a
significant enhancement in its performance. This enhancement was evident in the progressive decline of both training and validation losses,
suggesting that the model was becoming more adept at discerning patterns and generalizing from the dataset over time. Despite minor
fluctuations in the loss values across epochs, the overall trend exhibited a consistent downward trajectory. By the tenth epoch, the training
loss had reached its minimum value of 0.1487, while the validation loss was close behind at 0.1545, as illustrated in Figure 8. Training
results of a CNN model using the Comma architecture for autonomous driving showed in Figure 7. The figure displays the loss and
validation loss metrics over ten epochs of training, showing the model’s progress in reducing error during the optimization process. The
experiment was conducted using Python and is based on research experiments for autonomous driving applications.

Figure 7. Training results of a CNN model using the Comma architecture for autonomous driving

0.185 training
validation
0. 180
O.175 4
o 0-170
wn
=5
0. 165
0. 160
0.155 - \/—_/ﬂ‘
0.150 - \
Lo] 2 3 L] =3
epochs

Figure 8. Training performance of the CNN designed to predict steering angles in autonomous driving systems, based on the Comma
architecture

17

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

Figure 8 showcases the model’s progress throughout the training process, highlighting how the CNN learns to optimize predictions for
steering angles from input images. The experiment was conducted using Python, based on research aimed at improving autonomous
driving models, and is based on the original dataset. The findings indicate a substantial decline in error rates, suggesting that the model
exhibits satisfactory performance on the validation set. However, it must be acknowledged that this may not fully capture the model’s
potential performance, as training a CNN on NVIDIA GPUs could potentially yield more favorable results.

4.2. Training the CNN Model with NVIDIA Architecture

Subsequent to the preliminary training using the Comma architecture, the CNN model was trained on the same dataset with the NVIDIA
architecture for an additional ten epochs. The results of this stage, along with the detailed loss values, are presented in Figure 9 and Figure
10. During the initial epoch, the training loss exhibited an initial value of 0.1790 and demonstrated a substantial decrease by the tenth
epoch, reaching 0.0815. This reduction is indicative of the model’s progressive enhancement in minimizing the training loss as it learns
from the dataset.

0.18 4 — Taining
validation
0O.16
O.14
uw
v
=
0.12
0. 10 -
0.08 -
(o} 2 4 6 8
epochs

Figure 9. Training performance of the CNN designed to predict steering angles for autonomous driving, based on the NVIDIA architecture.

Figure 9 demonstrates the model’s learning process and its ability to optimize predictions for steering angles using CNN layers. The
experiment was conducted using Python, as part of research focused on advancing autonomous driving systems, and is based on the
original dataset. The validation loss, which ranged from 0.0766 to 0.0989 during the training process, suggests that the model exhibited
effectiveness in enhancing its performance across epochs. These results suggest that the model not only improved steadily during training
but also successfully minimized loss, thereby demonstrating the effectiveness of the training process. The observed fluctuations in
validation loss are indicative of a well-balanced generalization, thereby underscoring the model’s increasing capacity to adapt to the dataset
over time. Moreover, the findings from this stage of the dissertation provide valuable insights into CNN model training, particularly when
leveraging NVIDIA architecture. The model underwent training over the course of ten iterations, with each iteration corresponding to a
distinct phase of learning. Its performance was monitored through training accuracy and loss, offering a detailed view of the model’s
learning progression. Although the model was not strictly constrained to ten epochs, performance evaluation was predominantly informed
by the training loss metric (see Figure 9). A thorough examination of the findings necessitates a comparison of the training and validation
losses across epochs. At the initial epoch, a significant disparity was observed between the training loss (0.1790) and the validation loss
(0.0989). This finding indicates that while the model was beginning to learn the training data, it had not yet demonstrated effective
generalization capabilities to the validation set. To add more, in the subsequent epochs, both training and validation losses exhibited a
consistent decline, indicative of enhanced model learning capabilities. By epoch 2, the training loss decreased to 0.1147, and the validation
loss decreased to 0.0880. By epoch 3, the training loss was 0.1029, and the validation loss reached 0.0863, indicating a gradual yet
consistent reduction. This trend of progressive improvement persisted through subsequent epochs. As the training process unfolded, a
notable trend emerged: the discrepancy between the training and validation losses began to diminish and stabilize over time. By the tenth
epoch, the training loss had decreased to 0.0815, while the validation loss reached 0.0766. This convergence suggests that the model
effectively generalized to the validation data, a hallmark of a balanced model that circumvents both overfitting and underfitting. Overall,
the model exhibited consistent enhancement in both training and validation performance metrics. The negligible discrepancy between the
two losses in subsequent epochs suggests that the model learned efficiently without overfitting. In summary, the experiment demonstrated
that the model’s capacity to generalize to unseen data increased progressively during the training process, culminating in a robust and
effective final model that is well-suited for the designated task. Figure 10 presents the model’s loss and validation loss metrics over ten
epochs, illustrating how the model improves its performance with each iteration. This experiment was conducted using Python as part of
the research focused on optimizing CNN models for autonomous driving tasks.

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

Figure 10. Training results of a CNN model with the NVIDIA architecture for predicting steering angles in autonomous driving systems
5. CONCLUSION

This study examines advanced CNN-based approaches for autonomous driving using simulators such as Udacity. Emphasis is placed on
data quality, preprocessing, and augmentation, which are shown to significantly enhance model performance. Networks trained on diverse,
high-quality datasets demonstrate strong generalization across varied driving scenarios. A comparative analysis of Comma and NVIDIA
architectures reveals distinct strengths: NVIDIA excels at capturing complex image patterns, while Comma is more efficient in simpler
environments and requires less training time. The study also highlights the critical role of optimization algorithms in balancing accuracy
and computational efficiency. Results indicate that combining high-fidelity data, effective preprocessing, optimal architecture selection,
and suitable optimization strategies yields robust and reliable performance in autonomous driving simulations. These findings provide
actionable insights for developing safe, adaptable, and efficient autonomous vehicle systems, emphasizing the importance of ongoing
research in data quality, architectural design, and optimization methods.

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). Tensorflow: Large-scale machine learning
on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467. 1-19.

Amini, A., Gilitschenski, 1., Phillips, J., Moseyko, J., Banerjee, R., Karaman, S., & Rus, D. (2020). Learning robust control policies for
end-to-end autonomous driving from data-driven simulation. IEEE Robotics and Automation Letters, 5(2), 1143-1150.

Bojarski, M., Del Testa, D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., ... & Zieba, K. (2016). End to end learning for self-driving
cars. arXiv preprint arXiv:1604.07316. 1-9.

Caffaratti, G. D., Marchetta, M. G., & Forradellas, R. Q. (2019). Stereo matching through squeeze deep neural networks. Inteligencia
Artificial, 22(63), 16-38.

Comma.ai. (2016). research [Source code]. GitHub. https://github.com/commaai/research. Accessed 13 March 2025.
Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., & Koltun, V. (2017). CARLA: An open urban driving simulator. In Conference on
robot learning (pp. 1-16). PMLR.

Jordan, J. (2025). Convolutional neural network architectures. Jeremy Jordan. Retrieved January 15, 2025, from
https://www.jeremyjordan.me/convnet-architectures/

Keras. (2023). Keras. https://keras.io

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Advances in
neural information processing systems, 25, 1-9.

Lade, S., Shrivastav, P., Waghmare, S., Hon, S., Waghmode, S., & Teli, S. (2021, March). Simulation of self driving car using deep
learning. In 2021 international conference on emerging smart computing and informatics (ESCI) (pp. 175-180). IEEE.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436-444.

Pomerleau, D. A. (1988). Alvinn: An autonomous land vehicle in a neural network. Advances in neural information processing systems, 1,
305-313.

Rao, C. R., & Singer, B. (2017). Regression analysis and its applications: A data-oriented approach (2nd ed.). Springer.
https://doi.org/10.1007/978-3-319-70952-1

Santana, E., & Hotz, G. (2016). Learning a driving simulator. arXiv preprint arXiv:1608.01230. 1-8.

https://github.com/commaai/research
https://www.jeremyjordan.me/convnet-architectures/
https://keras.io/
https://doi.org/10.1007/978-3-319-70952-1

Volume 2, Issue 3 International Journal of Management and Marketing Intelligence

Shafiee, M. J., Chywl, B., Li, F., & Wong, A. (2017). Fast YOLO: A fast you only look once system for real-time embedded object
detection in video. arXiv preprint arXiv:1709.05943.

Smolyakov, M. V., Frolov, A. 1., Volkov, V. N., & Stelmashchuk, 1. V. (2018). Self-driving car steering angle prediction based on deep
neural network an example of CarND udacity simulator. In 2018 IEEE 12th international conference on application of information and
communication technologies (AICT) (pp. 1-5). IEEE.

Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., & Abbeel, P. (2017). Domain randomization for transferring deep neural networks
from simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 23-30). IEEE.

Udacity (2017). An open source self-driving car. https://www.udacity.com/self-driving-car. Accessed 15 Feburary 2025.
Wikipedia contributors. (2023). Mean squared error. In Wikipedia. https://en.wikipedia.org/wiki/Mean_squared_error

WIRED Brand Lab. (2016, March). A brief history of autonomous vehicle technology. WIRED.
https://www.wired.com/brandlab/2016/03/a-brief-history-of-autonomous-vehicle-technology/

20

https://www.udacity.com/self-driving-car.%20Accessed%2015%20Feburary%202025
https://en.wikipedia.org/wiki/Mean_squared_error
https://www.wired.com/brandlab/2016/03/a-brief-history-of-autonomous-vehicle-technology/

